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ABSTRACT

A numerical method for solving a problem in unsteady slag flow in the [

hearth of a blast furnace is presented. This problem is reduced to a free

boundary problem for an elliptic system. The potential problem for a given

free boundary is approximated by the penalty method. The derivatives of the

potential function on the free boundary is approximated by the integration of

the penalty term, and then the subsequent shape of the free boundary is

obtained by solving the differential equation for the motion of the free

boundary. The finite difference method is used to solve the penalized

problem. A numerical example is given. ---
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NUMERICAL SOLUTION OF FREE BOUNDARY PROBLEM
FOR UNSTEADY SLAG FLOW IN THE HEARTH

* 0*

Makoto Natori and Hideo Kawarada

INTRODUCTION

We present a numerical method for solving a problem in unsteady flow of

molten slag in the hearth region of iron producing blast furnaces during the

tapping operation [1). This problem is reduced to a free boundary problems

for an elliptic system. This type of problem is similar to the porous flow of

underground water in which the water surface is a free boundary. The

numerical calculations of this type of problem were done by various

researchers (2 - 5]. The three-dimensional problem of the slag flow in the

hearth was solved by using the finite element method by Ichlhara and Fukutake

[6). They concluded that their computation scheme is not efficient in

practical use.

The object of this paper is to resolve this computational instability by

using the penalty method developed by Kawarada and natori [7 - 101.

2. FORMULATION

We consider two-dimensional slag flow in the hearth which is bounded by

* impermeable boundaries y - 0, x - 0 and x - a. One of vertical boundaries,

x = 0, has a tapping hole near the bottom. As shown in Figure 1, y - g(x,t)

denotes the free surface of the slag region fl
g
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-g {(x,y) I0 < x < a, 0 < y < g(x,t))

b

Free boundary,

y= g(x,t)

Tapping hole

0 a x

Figure 1

A velocity potential can be defined by

where p Is the fluid pressure and Y Is the specific weight of the fluid.

If it is assumed that Darcy's law holds, the potential is given by

(1) A 0 in

(2) * y on y -g(x,t)

(3) *y 0 ony-0

(4) #* M 0 on x - 0 and x -a, except on the tapping hole

(5) k (k >0 )on the tapping hole

where k is a constant.
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The motion of the free surface is given by

(6) gt - (#xgx - *y)ly-gx,t)"
The initial shape of the free surface, y - g(x,O), is given and forms an

initial condition for equation (6).

When we try to solve the problem formulated above, we must get a

numerical solution of the potential problem (1) - (5) for a given free

boundary y - g(x,t). When this is done, the derivatives of the potential

function can be calculated on the free boundary, and then the subsequent shape

of the free boundary is obtained by solving the equation (6).

If we use the method of the integrated penalty to solve the potential

problem, then the derivatives of the potential function on the free boundary

are easily approximated (10, 11]. This is the reason for our application of

the penalty method to the free boundary problems.

3. PENALTY METHOD

3.1. Penalized problem

We define the characteristic function X (xyt) such as

(7) X gXYt17 / (xwyet) -"n
0" in n

.: g

where the domains n £ and n, which includes n C, are defined by
q 9

fl C {(xy) I 0 < x < a, 0 < y < g(x,t)}
9

and

n {(x,y) 0 < x < a, 0 < y < b)

as shown in Figure 2. Here y - g [x,t) is the approximate free boundary

defined later.

I-3
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0~ ax

Figure 2

By te ue of X ,equation (1) is approximated by

(8) t* - x(+ - y) MO in a

vhere C is a positive constant. We add a nov boundary condition:

*(9) * y on y =b

to the boundary conditions (3) -(5).

* In tact, if we let C be suffciently small then we know that

approximates * in U1 C and *is nearly equal to y in A-0 C (121.
9

Therefore the boundary condition (2) in approximately satisfied.

if we use the method of integrated penalty, equation (6) is approximated

by

(10) C~y

This equation is obtained as follows. We put

-4-
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p , p (xy) I X,(e .y) ,

q -q (xy) -b p(x,n)dl

By an application of Theorems 1.1 and 1.2 In [11], we have

2gIXin M
. pC + ~~~nly-g(x,t) 1+g x X ny ) (1

q 3 "nlyg(xt) (1 - X) in V12)

as e 0 and

C
q (Xgc(xft)) - 2ny'gx,t)

where n is outward normal to 0 and
g

- - yin

in n-ni •

Then we have

4 xgx " y)ly1(x,t) f -1 + +giX an yg(xt )

-1 + q (xg (x,t))

.-,. •+ X _+ -, .~

Substituting this approximation Into (6) we have (10). Now, the second term

in the right hand side of (10) is called the integrated penalty.

3.2. Discretization of the penalized problem

The penalized problem (8) with the boundary conditions (3) - (5) end (9)

is discretized by the finite difference method. Also the free boundary

equation (10) is solved by Ruler's method. The intervals 0 f x < a and

0 < y = b are divided Into N and X equal subintervals of width h. The

mesh size of time is denoted by At. We use the following notations in the

discrete system:

-5-



x -

tk -kAt, O k

Xi,j,k - *e (xLYjlt k)

We define the discrete characteristic function by

1 j > [giJk/hl

()Xijk h 2ij (gi,k/h]

0 j <' ri k/h]

vhere [Idenotes the Gauss symbol and

P i,k = gi,k/ h 
- [gi,k/hJ

If we apply five points formula for the Laplacian, ye have the following

equations the potential function #*ijk satisfies for any k,

22

(12) h ,-, ~+,
iJ-I~~k YJI~ XJi,j,k

(0 <i <N, 0( <j(

This system of linear equations is solved by the incomplete Cholesky

decomposition combined with conjugate gradient method [131.

The free boundary gi~ Is obtained by

t
(13) ,k+1 ~ +At F(~ 0  (0 < i < N, 0 < k)

(14) F(gi~ )-- + J= Xi,j,k (4i,j,k yj)
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It should be noted that Xi,j,k and ij k  are determined by 9 Jk*

3.3. How to choose the penalty parameter C

We assume E is expressed by

(15) 

= h ( > O)

and try to find an optimal value of a to minimize the difference of the

right sides of equations (6) and (14). For this purpose, we consider a simple

test problem:

Au 0 in a
g

u M 1-y on x - 0

u = 1-x on y = 0

U = 0 on y - 1-x

This problem has an exact solution:

"q ~Ul -x-y

in A (see Figure 3).
g

Y i

a

1

y= 1-x

. 0 1 a x

Figure 3
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There-ore,

€ 1 )~9 -- l y g ( x ) "

where g(x) , l-x.

Here we construct the discretized problem (P ) of the penalized
C h

equation (P ):

U XU - 0 in 9

where

in
g

0 in ai

We investigate the difference between (17) and the Integrated penalty:

qi = , "L x i,jui, j

by varying the value of a in (15). We find that the optimal value of a is

3 - 4 for 1/8 1 h < 1/16.

3.4. Stability condition

Here we study the stability condition of (13). It is well known 1141

that the stability condition is

(19) dt( J 2

where

1(g) -- 1 + f fo XC(g) (*C(g) - y)dy

If we use the property:

i1+. (x,g(xft))l CO re

where C0  is a constant Independent of [ [151, then we have

Co

11(g) - F( -gI

If we substitut C0 // to 19F/3g1 in (19), then we have

*1

_ . i " , ., -. -... .. ..-. -



Co0

Therefore vs may choose

(20) A

4. NUMERICAL EXAMPLE

In this section we present results for the problem (1) -(6), obtained by

the method of Integrated penalty. Data of the problem are as follows:

a =

b - 0.3125

k -0.625

The tapping hole is located at (0, 1/16). The Initial surface is given by

g(x,0) -0.25.

The parameters used for the numerical calculations are

h - 1/16

3
- h -1/4096

Attiv' 1/64

In Figure 4 we show the results.

0 025 05 .5 .

x
Figure 4
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